这个方案不使用复杂的向量化存储,而是采用简单的颜色直方图作为特征,适合小规模应用和入门学习。
这个方案不使用复杂的向量化存储,而是采用简单的颜色直方图作为特征,适合小规模应用和入门学习。
1. 数据库设计 (MySQL)
CREATE TABLE `image_features` (
`id` int NOT NULL AUTO_INCREMENT,
`image_name` varchar(255) NOT NULL,
`file_path` varchar(512) NOT NULL,
`red_histogram` varchar(255) NOT NULL,
`green_histogram` varchar(255) NOT NULL,
`blue_histogram` varchar(255) NOT NULL,
`upload_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
2. Java实现代码
2.1 添加依赖 (pom.xml)
<dependencies>
<!-- Spring Boot Web -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
<version>2.7.0</version>
</dependency>
<!-- 数据库连接 -->
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>8.0.28</version>
</dependency>
<!-- 图片处理 -->
<dependency>
<groupId>org.imgscalr</groupId>
<artifactId>imgscalr-lib</artifactId>
<version>4.2</version>
</dependency>
<!-- 文件上传 -->
<dependency>
<groupId>commons-fileupload</groupId>
<artifactId>commons-fileupload</artifactId>
<version>1.4</version>
</dependency>
</dependencies>
2.2 图片特征提取工具类
import javax.imageio.ImageIO;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.Arrays;
public class ImageFeatureExtractor {
// 提取RGB颜色直方图特征
public static ImageFeatures extractFeatures(File imageFile) throws IOException {
BufferedImage img = ImageIO.read(imageFile);
if (img == null) {
throw new IOException("无法读取图片文件");
}
// 简化处理:缩放图片到统一大小
img = resizeImage(img, 100, 100);
int[] redHistogram = new int[16]; // 红色分量直方图 (0-15)
int[] greenHistogram = new int[16]; // 绿色分量直方图
int[] blueHistogram = new int[16]; // 蓝色分量直方图
// 计算颜色直方图
for (int y = 0; y < img.getHeight(); y++) {
for (int x = 0; x < img.getWidth(); x++) {
int rgb = img.getRGB(x, y);
int r = (rgb >> 16) & 0xFF;
int g = (rgb >> 8) & 0xFF;
int b = rgb & 0xFF;
redHistogram[r / 16]++;
greenHistogram[g / 16]++;
blueHistogram[b / 16]++;
}
}
// 归一化处理
int totalPixels = img.getWidth() * img.getHeight();
double[] normalizedRed = normalizeHistogram(redHistogram, totalPixels);
double[] normalizedGreen = normalizeHistogram(greenHistogram, totalPixels);
double[] normalizedBlue = normalizeHistogram(blueHistogram, totalPixels);
return new ImageFeatures(
arrayToString(normalizedRed),
arrayToString(normalizedGreen),
arrayToString(normalizedBlue)
);
}
private static BufferedImage resizeImage(BufferedImage originalImage, int width, int height) {
BufferedImage resizedImage = new BufferedImage(width, height, BufferedImage.TYPE_INT_RGB);
resizedImage.getGraphics().drawImage(originalImage, 0, 0, width, height, null);
return resizedImage;
}
private static double[] normalizeHistogram(int[] histogram, int total) {
double[] normalized = new double[histogram.length];
for (int i = 0; i < histogram.length; i++) {
normalized[i] = (double) histogram[i] / total;
}
return normalized;
}
private static String arrayToString(double[] array) {
StringBuilder sb = new StringBuilder();
for (double d : array) {
sb.append(String.format("%.4f", d)).append(",");
}
return sb.substring(0, sb.length() - 1);
}
public static class ImageFeatures {
public final String redHistogram;
public final String greenHistogram;
public final String blueHistogram;
public ImageFeatures(String redHistogram, String greenHistogram, String blueHistogram) {
this.redHistogram = redHistogram;
this.greenHistogram = greenHistogram;
this.blueHistogram = blueHistogram;
}
}
}
2.3 数据库访问层
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.stereotype.Repository;
import java.util.List;
@Repository
public class ImageRepository {
private final JdbcTemplate jdbcTemplate;
public ImageRepository(JdbcTemplate jdbcTemplate) {
this.jdbcTemplate = jdbcTemplate;
}
public void saveImage(String imageName, String filePath,
String redHist, String greenHist, String blueHist) {
String sql = "INSERT INTO image_features " +
"(image_name, file_path, red_histogram, green_histogram, blue_histogram) " +
"VALUES (?, ?, ?, ?, ?)";
jdbcTemplate.update(sql, imageName, filePath, redHist, greenHist, blueHist);
}
public List<ImageMatch> findSimilarImages(String redHist, String greenHist, String blueHist,
int limit) {
String sql = "SELECT id, image_name, file_path, " +
"(ABS(red_histogram - ?) + ABS(green_histogram - ?) + ABS(blue_histogram - ?)) " +
"AS similarity " +
"FROM image_features " +
"ORDER BY similarity ASC " +
"LIMIT ?";
return jdbcTemplate.query(sql, (rs, rowNum) ->
new ImageMatch(
rs.getLong("id"),
rs.getString("image_name"),
rs.getString("file_path"),
rs.getDouble("similarity")
),
redHist, greenHist, blueHist, limit
);
}
public static class ImageMatch {
public final long id;
public final String imageName;
public final String filePath;
public final double similarity;
public ImageMatch(long id, String imageName, String filePath, double similarity) {
this.id = id;
this.imageName = imageName;
this.filePath = filePath;
this.similarity = similarity;
}
}
}
2.4 控制器实现
import org.springframework.beans.factory.annotation.Value;
import org.springframework.web.bind.annotation.*;
import org.springframework.web.multipart.MultipartFile;
import java.io.File;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.List;
@RestController
@RequestMapping("/api/images")
public class ImageController {
@Value("${upload.directory}")
private String uploadDirectory;
private final ImageRepository imageRepository;
public ImageController(ImageRepository imageRepository) {
this.imageRepository = imageRepository;
}
@PostMapping("/upload")
public String uploadImage(@RequestParam("file") MultipartFile file) throws IOException {
// 确保上传目录存在
Path uploadPath = Paths.get(uploadDirectory);
if (!Files.exists(uploadPath)) {
Files.createDirectories(uploadPath);
}
// 保存文件
String fileName = System.currentTimeMillis() + "_" + file.getOriginalFilename();
Path filePath = uploadPath.resolve(fileName);
file.transferTo(filePath);
// 提取特征
ImageFeatureExtractor.ImageFeatures features =
ImageFeatureExtractor.extractFeatures(filePath.toFile());
// 存入数据库
imageRepository.saveImage(
file.getOriginalFilename(),
filePath.toString(),
features.redHistogram,
features.greenHistogram,
features.blueHistogram
);
return "图片上传成功! ID: " + fileName;
}
@PostMapping("/search")
public List<ImageRepository.ImageMatch> searchSimilarImages(@RequestParam("file") MultipartFile file)
throws IOException {
// 临时保存查询图片
Path tempFile = Files.createTempFile("query-", file.getOriginalFilename());
file.transferTo(tempFile);
// 提取查询图片特征
ImageFeatureExtractor.ImageFeatures queryFeatures =
ImageFeatureExtractor.extractFeatures(tempFile.toFile());
// 删除临时文件
Files.delete(tempFile);
// 搜索相似图片
return imageRepository.findSimilarImages(
queryFeatures.redHistogram,
queryFeatures.greenHistogram,
queryFeatures.blueHistogram,
5
);
}
}
2.5 配置文件 (application.properties)
# 服务器配置
server.port=8080
# 文件上传目录
upload.directory=uploads/
# 数据库配置
spring.datasource.url=jdbc:mysql://localhost:3306/image_search?useSSL=false
spring.datasource.username=root
spring.datasource.password=yourpassword
spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver
3. 使用说明
3.1. 上传图片:
curl -X POST -F "file=@test.jpg" http://localhost:8080/api/images/upload
3.2. 搜索相似图片:
curl -X POST -F "file=@query.jpg" http://localhost:8080/api/images/search
4. 方案特点
- 简单易实现:使用颜色直方图代替复杂向量
- 无需深度学习:纯Java实现,不依赖外部模型
- 轻量级:适合小型应用和教学演示
- 可扩展:可以在此基础上添加更复杂的特征
5. 改进建议
- 添加更多特征:如纹理特征、形状特征等
- 优化相似度算法:使用更精确的直方图比较方法
- 添加缓存机制:提高搜索性能
- 支持批量导入:一次上传多张图片
这个方案虽然不如深度学习方案精确,但对于小型应用和入门学习已经足够,且实现简单、运行速度快。
在基础方案上添加更复杂的图像特征
在原有颜色直方图的基础上,我们可以添加纹理特征和形状特征来提升相似图片搜索的准确性。以下是逐步增强的实现方案:
1. 扩展数据库设计
ALTER TABLE `image_features`
ADD COLUMN `texture_feature` VARCHAR(255) AFTER `blue_histogram`,
ADD COLUMN `shape_feature` VARCHAR(255) AFTER `texture_feature`;
2. 纹理特征实现 (灰度共生矩阵)
import java.awt.image.BufferedImage;
import java.awt.image.ConvolveOp;
import java.awt.image.Kernel;
public class TextureFeatureExtractor {
// 使用灰度共生矩阵(GLCM)提取纹理特征
public static String extractGLCMFeature(BufferedImage image) {
// 转换为灰度图像
BufferedImage grayImage = convertToGray(image);
// 定义GLCM参数
int distance = 1; // 像素对距离
int[] angles = {0, 45, 90, 135}; // 四个方向
int levels = 16; // 灰度级数
// 计算四个方向的GLCM
double[][] glcm = new double[levels][levels];
for (int angle : angles) {
accumulateGLCM(grayImage, glcm, distance, angle, levels);
}
// 归一化并提取特征值
normalizeGLCM(glcm);
double contrast = calculateContrast(glcm);
double energy = calculateEnergy(glcm);
double homogeneity = calculateHomogeneity(glcm);
return String.format("%.4f,%.4f,%.4f", contrast, energy, homogeneity);
}
private static BufferedImage convertToGray(BufferedImage colorImage) {
BufferedImage grayImage = new BufferedImage(
colorImage.getWidth(),
colorImage.getHeight(),
BufferedImage.TYPE_BYTE_GRAY);
grayImage.getGraphics().drawImage(colorImage, 0, 0, null);
return grayImage;
}
private static void accumulateGLCM(BufferedImage image, double[][] glcm,
int distance, int angle, int levels) {
int width = image.getWidth();
int height = image.getHeight();
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
int x2 = x, y2 = y;
// 根据角度计算相邻像素坐标
switch (angle) {
case 0: x2 = x + distance; break;
case 45: x2 = x + distance; y2 = y - distance; break;
case 90: y2 = y - distance; break;
case 135: x2 = x - distance; y2 = y - distance; break;
}
// 检查边界
if (x2 < 0 || x2 >= width || y2 < 0 || y2 >= height) continue;
// 获取灰度值并量化
int gray1 = (image.getRGB(x, y) & 0xFF) * levels / 256;
int gray2 = (image.getRGB(x2, y2) & 0xFF) * levels / 256;
glcm[gray1][gray2]++;
}
}
}
private static void normalizeGLCM(double[][] glcm) {
double sum = 0;
for (double[] row : glcm) {
for (double val : row) {
sum += val;
}
}
for (int i = 0; i < glcm.length; i++) {
for (int j = 0; j < glcm[i].length; j++) {
glcm[i][j] /= sum;
}
}
}
private static double calculateContrast(double[][] glcm) {
double contrast = 0;
for (int i = 0; i < glcm.length; i++) {
for (int j = 0; j < glcm[i].length; j++) {
contrast += glcm[i][j] * (i - j) * (i - j);
}
}
return contrast;
}
private static double calculateEnergy(double[][] glcm) {
double energy = 0;
for (double[] row : glcm) {
for (double val : row) {
energy += val * val;
}
}
return Math.sqrt(energy);
}
private static double calculateHomogeneity(double[][] glcm) {
double homogeneity = 0;
for (int i = 0; i < glcm.length; i++) {
for (int j = 0; j < glcm[i].length; j++) {
homogeneity += glcm[i][j] / (1 + Math.abs(i - j));
}
}
return homogeneity;
}
}
3. 形状特征实现 (Hu矩)
import java.awt.image.BufferedImage;
public class ShapeFeatureExtractor {
// 计算Hu矩作为形状特征
public static String extractHuMoments(BufferedImage image) {
// 转换为二值图像
BufferedImage binaryImage = convertToBinary(image);
// 计算几何矩
double m00 = calculateMoment(binaryImage, 0, 0);
double m10 = calculateMoment(binaryImage, 1, 0);
double m01 = calculateMoment(binaryImage, 0, 1);
// 计算质心
double xc = m10 / m00;
double yc = m01 / m00;
// 计算中心矩
double u11 = calculateCentralMoment(binaryImage, 1, 1, xc, yc);
double u20 = calculateCentralMoment(binaryImage, 2, 0, xc, yc);
double u02 = calculateCentralMoment(binaryImage, 0, 2, xc, yc);
double u30 = calculateCentralMoment(binaryImage, 3, 0, xc, yc);
double u03 = calculateCentralMoment(binaryImage, 0, 3, xc, yc);
double u12 = calculateCentralMoment(binaryImage, 1, 2, xc, yc);
double u21 = calculateCentralMoment(binaryImage, 2, 1, xc, yc);
// 归一化中心矩
double n20 = u20 / Math.pow(m00, 2);
double n02 = u02 / Math.pow(m00, 2);
double n11 = u11 / Math.pow(m00, 2);
double n30 = u30 / Math.pow(m00, 2.5);
double n03 = u03 / Math.pow(m00, 2.5);
double n12 = u12 / Math.pow(m00, 2.5);
double n21 = u21 / Math.pow(m00, 2.5);
// 计算Hu矩
double h1 = n20 + n02;
double h2 = Math.pow(n20 - n02, 2) + 4 * Math.pow(n11, 2);
double h3 = Math.pow(n30 - 3 * n12, 2) + Math.pow(3 * n21 - n03, 2);
double h4 = Math.pow(n30 + n12, 2) + Math.pow(n21 + n03, 2);
return String.format("%.4f,%.4f,%.4f,%.4f", h1, h2, h3, h4);
}
private static BufferedImage convertToBinary(BufferedImage image) {
BufferedImage binary = new BufferedImage(
image.getWidth(),
image.getHeight(),
BufferedImage.TYPE_BYTE_BINARY);
binary.getGraphics().drawImage(image, 0, 0, null);
return binary;
}
private static double calculateMoment(BufferedImage image, int p, int q) {
double moment = 0;
for (int y = 0; y < image.getHeight(); y++) {
for (int x = 0; x < image.getWidth(); x++) {
if ((image.getRGB(x, y) & 0xFF) > 128) { // 白色像素
moment += Math.pow(x, p) * Math.pow(y, q);
}
}
}
return moment;
}
private static double calculateCentralMoment(BufferedImage image, int p, int q,
double xc, double yc) {
double moment = 0;
for (int y = 0; y < image.getHeight(); y++) {
for (int x = 0; x < image.getWidth(); x++) {
if ((image.getRGB(x, y) & 0xFF) > 128) { // 白色像素
moment += Math.pow(x - xc, p) * Math.pow(y - yc, q);
}
}
}
return moment;
}
}
4. 更新特征提取服务
public class EnhancedImageFeatureExtractor {
public static EnhancedImageFeatures extractAllFeatures(File imageFile) throws IOException {
BufferedImage img = ImageIO.read(imageFile);
if (img == null) {
throw new IOException("无法读取图片文件");
}
// 统一大小
img = resizeImage(img, 256, 256);
// 颜色特征
ImageFeatureExtractor.ImageFeatures colorFeatures =
ImageFeatureExtractor.extractFeatures(img);
// 纹理特征
String textureFeature = TextureFeatureExtractor.extractGLCMFeature(img);
// 形状特征
String shapeFeature = ShapeFeatureExtractor.extractHuMoments(img);
return new EnhancedImageFeatures(
colorFeatures.redHistogram,
colorFeatures.greenHistogram,
colorFeatures.blueHistogram,
textureFeature,
shapeFeature
);
}
private static BufferedImage resizeImage(BufferedImage originalImage, int width, int height) {
BufferedImage resizedImage = new BufferedImage(width, height, BufferedImage.TYPE_INT_RGB);
resizedImage.getGraphics().drawImage(originalImage, 0, 0, width, height, null);
return resizedImage;
}
public static class EnhancedImageFeatures {
public final String redHistogram;
public final String greenHistogram;
public final String blueHistogram;
public final String textureFeature;
public final String shapeFeature;
public EnhancedImageFeatures(String redHistogram, String greenHistogram,
String blueHistogram, String textureFeature,
String shapeFeature) {
this.redHistogram = redHistogram;
this.greenHistogram = greenHistogram;
this.blueHistogram = blueHistogram;
this.textureFeature = textureFeature;
this.shapeFeature = shapeFeature;
}
}
}
5. 更新数据库访问层
@Repository
public class EnhancedImageRepository {
private final JdbcTemplate jdbcTemplate;
public EnhancedImageRepository(JdbcTemplate jdbcTemplate) {
this.jdbcTemplate = jdbcTemplate;
}
public void saveEnhancedImage(String imageName, String filePath,
EnhancedImageFeatureExtractor.EnhancedImageFeatures features) {
String sql = "INSERT INTO image_features " +
"(image_name, file_path, red_histogram, green_histogram, blue_histogram, " +
"texture_feature, shape_feature) VALUES (?, ?, ?, ?, ?, ?, ?)";
jdbcTemplate.update(sql,
imageName,
filePath,
features.redHistogram,
features.greenHistogram,
features.blueHistogram,
features.textureFeature,
features.shapeFeature
);
}
public List<EnhancedImageMatch> findSimilarImages(EnhancedImageFeatureExtractor.EnhancedImageFeatures queryFeatures,
int limit) {
String sql = "SELECT id, image_name, file_path, " +
"( " +
" 0.3 * (ABS(red_histogram - ?) + ABS(green_histogram - ?) + ABS(blue_histogram - ?)) + " +
" 0.4 * ABS(texture_feature - ?) + " +
" 0.3 * ABS(shape_feature - ?) " +
") AS similarity " +
"FROM image_features " +
"ORDER BY similarity ASC " +
"LIMIT ?";
return jdbcTemplate.query(sql, (rs, rowNum) ->
new EnhancedImageMatch(
rs.getLong("id"),
rs.getString("image_name"),
rs.getString("file_path"),
rs.getDouble("similarity")
),
queryFeatures.redHistogram,
queryFeatures.greenHistogram,
queryFeatures.blueHistogram,
queryFeatures.textureFeature,
queryFeatures.shapeFeature,
limit
);
}
public static class EnhancedImageMatch {
public final long id;
public final String imageName;
public final String filePath;
public final double similarity;
public EnhancedImageMatch(long id, String imageName, String filePath, double similarity) {
this.id = id;
this.imageName = imageName;
this.filePath = filePath;
this.similarity = similarity;
}
}
}
6. 更新控制器
@RestController
@RequestMapping("/api/enhanced-images")
public class EnhancedImageController {
@Value("${upload.directory}")
private String uploadDirectory;
private final EnhancedImageRepository imageRepository;
public EnhancedImageController(EnhancedImageRepository imageRepository) {
this.imageRepository = imageRepository;
}
@PostMapping("/upload")
public String uploadEnhancedImage(@RequestParam("file") MultipartFile file) throws IOException {
Path uploadPath = Paths.get(uploadDirectory);
if (!Files.exists(uploadPath)) {
Files.createDirectories(uploadPath);
}
String fileName = System.currentTimeMillis() + "_" + file.getOriginalFilename();
Path filePath = uploadPath.resolve(fileName);
file.transferTo(filePath);
// 提取所有特征
EnhancedImageFeatureExtractor.EnhancedImageFeatures features =
EnhancedImageFeatureExtractor.extractAllFeatures(filePath.toFile());
// 存入数据库
imageRepository.saveEnhancedImage(
file.getOriginalFilename(),
filePath.toString(),
features
);
return "图片上传成功! 文件名: " + fileName;
}
@PostMapping("/search")
public List<EnhancedImageRepository.EnhancedImageMatch> searchSimilarEnhancedImages(
@RequestParam("file") MultipartFile file) throws IOException {
Path tempFile = Files.createTempFile("query-", file.getOriginalFilename());
file.transferTo(tempFile);
// 提取查询图片特征
EnhancedImageFeatureExtractor.EnhancedImageFeatures queryFeatures =
EnhancedImageFeatureExtractor.extractAllFeatures(tempFile.toFile());
Files.delete(tempFile);
// 搜索相似图片
return imageRepository.findSimilarImages(queryFeatures, 5);
}
}
7. 特征权重优化建议
在实际应用中,可以通过以下方式优化特征权重:
- 手动调整权重:根据测试结果调整不同特征的权重比例
- 机器学习优化:收集用户反馈数据,训练权重模型
- 动态权重:根据图片类型自动调整权重(如风景图侧重颜色,纹理图侧重纹理)
8. 性能优化
- 特征预处理:在上传时计算并存储所有特征
- 索引优化:为常用搜索特征创建数据库索引
- 缓存机制:缓存热门图片的搜索结果
- 并行计算:使用多线程并行计算不同特征
这个增强版方案通过添加纹理和形状特征,显著提升了图片搜索的准确性,同时保持了相对简单的实现方式。